Melt the Polybase to about 55-57º C. Slowly and with stirring, sprinkle the powders: Fattibase, the quantity on remain mold. Heat Fattibase the nifedipine. 10.5 g of 0.25 g. If the mold. To release a drug, a suppository must do which of the following after administration:

A. Rapidly and evenly absorb into the skin
B. Slowly and evenly absorb into the skin
C. Rapidly and evenly absorb into the bloodstream
D. Slowly and evenly absorb into the bloodstream
E.燕

Send this completed form in for CE credit Today!

Hydrocortisone 100 mg Microwave Suppository

Hydrocortisone 15 mg

Powder
310 mg

Melt the suppository until fluid. Slowly and with stirring, sprinkle the powders: Fattibase, the quantity on remain mold. Heat Fattibase the phenytoin. 100 mg of 100 mg. The

Phenytoin Sulfate 30 to 100 mg Microwave Suppository

Phenytoin Sulfate 15 mg

Powder
310 mg

Melt the suppository until fluid. Slowly and with stirring, sprinkle the powders: Fattibase, the quantity on remain mold. Heat Fattibase the phenytoin. 100 mg of 100 mg. The

REFERENCE
Interactions site and the high toxicity which these esters cause to the body fluid system, it should be mentioned that many important biomolecules (proteins, fats, carbohydrates, etc.) are inactivated by the anion exchange reaction. Anions that are present in the fluid phase may be inactivated due to the anion exchange reaction with the anion exchange resin. The degree of inactivation is determined by the concentration of anions in the fluid phase and the concentration of the anion exchange resin used. Under physiologic conditions, the concentration of anions is relatively low, and the amount of inactivation is therefore negligible.

Classification of Suppository Bases: Various classifications of suppository bases are based on their solubility properties. Suppository bases can be classified into three groups: water-soluble, anion-exchange, and non-polar bases. Water-soluble bases are those that dissolve in water, whereas anion-exchange bases are those that exchange anions with the fluid phase. Non-polar bases are those that are insoluble in water and are used in suppository formulations to increase the bioavailability of drugs.

For example, water-soluble bases are commonly used for the administration of drugs that are insoluble in water, such as antibiotics and antivirals. Anion-exchange bases are used for the administration of drugs that are active in the anorectal fluids, such as hormones and anti-inflammatory agents. Non-polar bases are used for the administration of drugs that are active in the rectal membranes, such as pain relievers and anti-diarrheal agents.

Summary: The choice of the suppository base is crucial for the success of the suppository formulation. The base must be selected based on the nature of the drug to be administered and the desired effect. Water-soluble bases are used for drugs that are active in the anorectal fluids, anion-exchange bases are used for drugs that are active in the rectal membranes, and non-polar bases are used for drugs that are active in the rectal membranes.

Antifungal Suppository: The antifungal suppository is prepared by mixing the antifungal agent with the suppository base. The suppository base is chosen based on the nature of the drug to be administered and the desired effect. Water-soluble bases are used for drugs that are active in the anorectal fluids, anion-exchange bases are used for drugs that are active in the rectal membranes, and non-polar bases are used for drugs that are active in the rectal membranes. The suppository base is chosen based on the nature of the drug to be administered and the desired effect. Water-soluble bases are used for drugs that are active in the anorectal fluids, anion-exchange bases are used for drugs that are active in the rectal membranes, and non-polar bases are used for drugs that are active in the rectal membranes.
migration will size absorption. Here, surface ed amount, surfactants of the membrane, the... changing diameters, hydrophobic groups, electrostatic forces, collapse, break.

Fatality at Displacement: First, fatty layers are perhaps the most important aspect of the membrane. They include surfactants that are lipid-soluble and act as a barrier to the permeation of hydrophilic materials. Surfactants are amphipathic molecules that are made up of a hydrophilic (polar) head and a hydrophobic (nonpolar) tail. When surfactants are added to the membrane, they can disrupt the barrier and allow the passage of hydrophilic materials across the membrane. The presence of surfactants in the membrane can also affect the stability of the membrane and its ability to retain its integrity.

Special Suppositories—From the Literature

There have been attempts to find rapids from the natural heat of the body. For example, a study published by Pharo et al. (2017) investigated the effect of the temperature on the dissolution of suppositories. The study found that the temperature of the body can affect the dissolution of suppositories, and this effect is more pronounced in suppositories that are designed to be used rectally.

Hindm Type Suppositories: Macrogel suppository, prepared (1) as an unscented base, (2) in a herbal type suppository containing a controlled release of menthol, (3) in a solid base that contains fennel oil, and (4) in a solid base that contains a blend of essential oils. Other bases in this category include commercial products such as Fattibase (a mixture from past pharmaceutical and commercial uses), and the use of a natural base such as the surface of the rectum. The authors concluded that the use of a natural base such as the surface of the rectum can improve the dissolution of suppositories.

Dialube Gel Suppositories: Two types of glycol-glycerine/water suppositories have been developed for suppository use. They differ in their composition, with one containing glycol and glycerin, and the other containing glycol and water. The authors concluded that the use of a natural base such as the surface of the rectum can improve the dissolution of suppositories.

An alternative approach to the dissolution of suppositories is the use of a natural base such as the surface of the rectum. The authors concluded that the use of a natural base such as the surface of the rectum can improve the dissolution of suppositories.

Toxicity and Discharge of Suppositories: These factors which are important in the use of suppositories can be monitored (1) by the use of a natural base such as the surface of the rectum. The authors concluded that the use of a natural base such as the surface of the rectum can improve the dissolution of suppositories.

Choice of Dosage Form: The first consideration in designing a suppository is the choice of the dosage form. This is an important consideration when designing a dosage form, as the choice of the dosage form can affect the absorption of the drug and its bioavailability. The authors concluded that the use of a natural base such as the surface of the rectum can improve the dissolution of suppositories.

References:

the rectal or vaginal membranes. Both rectal and oral routes of administration are frequently used to deliver drugs in the form of suppositories. Many factors influence the selection of formulations and their development, including the type of ingredient, the desired route of administration, the properties of the active drug, and the desired dosage form. For example, it is generally more convenient to administer suppositories orally than to have them inserted into the rectum or vagina. However, the rectal route may be preferable for some formulations due to the higher bioavailability of the drug. Oral administration requires the drug to pass through the digestive system, while rectal administration avoids this process, allowing for faster absorption and a more direct action at the site of absorption.

Classification of Suppository Base: Four classifications of suppository bases are recognized - Waxy, Oily, Solid, and Gel. The waxy base is composed of fatty acids, which provide the desired consistency and allow for easy insertion. The oily base is composed of oils and fats, which allow for the easy dissolution of the drug and provide a smooth texture. The solid base is composed of waxes, which provide a firm and moldable texture. The gel base is composed of hydrogels, which provide a gel-like texture and allow for the slow release of the drug.

Preparation by placing the salicylic acid in a solution or salicylaldehyde and pouring into a mold. This method ensures that the drug is uniformly distributed and that the suppository is of uniform size and shape. However, this method is time-consuming and requires the use of specialized equipment.

Aqueous suppository bases are also used, but these are not as common as the other types. They are composed of a water-based solution and allow for the slow release of the drug, which can be useful for certain medications.

The results from this study suggested that the form and concentration of the ingredients used in the suppositories can significantly influence their bioavailability and efficacy. For example, the addition of a surfactant to the formulation can improve the dissolution rate of the drug and increase its absorption.

The study also suggested that the use of a more soluble ingredient, such as a hydrogel, can improve the bioavailability of the drug. The authors concluded that the development of suppository formulations requires careful consideration of the properties of the active ingredient and the desired bioavailability.

Compounding Formulas:

Salicylate Suppository (Lorazepam, 0.5 mg):

- Lorazepam 0.5 mg
- Polycarbophil 1 g
- Glycerin (Type 1) 10 g
- Propylene glycol 30 g
- Water 87 g

Mix the lorazepam and polycarbophil in a beaker, then add the glycerin and propylene glycol. Slowly pourable. Use as for a suppository.

Carbamazepine Suppository (80 mg):

- Carbamazepine 80 mg
- Polycarbophil 1 g
- Glycerin (Type 1) 10 g
- Propylene glycol 30 g
- Water 87 g

Mix the carbamazepine and polycarbophil in a beaker, then add the glycerin and propylene glycol. Slowly pourable. Use as for a suppository.

Clinical Hyaluronate 500 mg Suppository:

- Hyaluronate sodium 500 mg
- Polycarbophil 1 g
- Glycerin (Type 1) 10 g
- Propylene glycol 30 g
- Water 87 g

Mix the hyaluronate sodium and polycarbophil in a beaker, then add the glycerin and propylene glycol. Slowly pourable. Use as for a suppository.

Diazepam 5 mg Suppository:

- Diazepam 5 mg
- Polycarbophil 1 g
- Glycerin (Type 1) 10 g
- Propylene glycol 30 g
- Water 87 g

Mix the diazepam and polycarbophil in a beaker, then add the glycerin and propylene glycol. Slowly pourable. Use as for a suppository.

Dibutylpropion 2 mg Suppository:

- Dibutylpropion 2 mg
- Polycarbophil 1 g
- Glycerin (Type 1) 10 g
- Propylene glycol 30 g
- Water 87 g

Mix the dibutylpropion and polycarbophil in a beaker, then add the glycerin and propylene glycol. Slowly pourable. Use as for a suppository.

Itraconazole 200 mg Suppository:

- Itraconazole 200 mg
- Polycarbophil 1 g
- Glycerin (Type 1) 10 g
- Propylene glycol 30 g
- Water 87 g

Mix the itraconazole and polycarbophil in a beaker, then add the glycerin and propylene glycol. Slowly pourable. Use as for a suppository.

Lorazepam 1.25 mg Suppository:

- Lorazepam 1.25 mg
- Polycarbophil 1 g
- Glycerin (Type 1) 10 g
- Propylene glycol 30 g
- Water 87 g

Mix the lorazepam and polycarbophil in a beaker, then add the glycerin and propylene glycol. Slowly pourable. Use as for a suppository.

Paracetamol 0.1 g Suppository:

- Paracetamol 0.1 g
- Polycarbophil 1 g
- Glycerin (Type 1) 10 g
- Propylene glycol 30 g
- Water 87 g

Mix the paracetamol and polycarbophil in a beaker, then add the glycerin and propylene glycol. Slowly pourable. Use as for a suppository.

Pregabalin 150 mg Suppository:

- Pregabalin 150 mg
- Polycarbophil 1 g
- Glycerin (Type 1) 10 g
- Propylene glycol 30 g
- Water 87 g

Mix the pregabalin and polycarbophil in a beaker, then add the glycerin and propylene glycol. Slowly pourable. Use as for a suppository.

Prednisolone 5 mg Suppository:

- Prednisolone 5 mg
- Polycarbophil 1 g
- Glycerin (Type 1) 10 g
- Propylene glycol 30 g
- Water 87 g

Mix the prednisolone and polycarbophil in a beaker, then add the glycerin and propylene glycol. Slowly pourable. Use as for a suppository.

Tramadol 100 mg Suppository:

- Tramadol 100 mg
- Polycarbophil 1 g
- Glycerin (Type 1) 10 g
- Propylene glycol 30 g
- Water 87 g

Mix the tramadol and polycarbophil in a beaker, then add the glycerin and propylene glycol. Slowly pourable. Use as for a suppository.
Phenytoin 200 mg Suppository

Objectives:
- To provide information and support on formulating suppositories including the newest types of suppositories reported in literature.

Introduction
Phenytoin suppository is a formulation, and in compounding oral drugs, the main forms of suppository are soft suppositories, hard suppositories, and multiparticulate suppositories. Oral hygienic suppositories are different types of suppositories where the use of water-soluble bases is limited. Soft suppositories are not suitable for suppositories because of their undesirable physical properties. Materials as Witepsol H85 and paraffin oil form semi-rigid suppository bases.

Material and Methods
A mixture of paraffin oil and Witepsol H85 was melted at about 45ºC. The mixture was poured into the suppository mold and cooled for about 10 minutes. The suppositories were removed from the mold and were stable at room temperature.

Pharmacy Practice
Phenytoin suppository is a formulation in which the use of water-soluble bases is limited. Soft suppositories are not suitable for suppositories because of their undesirable physical properties. Materials as Witepsol H85 and paraffin oil form semi-rigid suppository bases.

Conclusion
In conclusion, the formulation of a suppository is a field of study that requires knowledge of materials and their properties. The selection of materials is crucial in determining the physical properties of the suppository. The use of water-soluble bases is limited, and soft suppositories are not suitable for suppositories because of their undesirable physical properties. Materials such as Witepsol H85 and paraffin oil form semi-rigid suppository bases.

Send this completed form in for CE credit Today!

Pharmacy Practice: Today

Regular CE articles on a variety of topics are now available online, including:

- **Objectives:**
 - To provide information and support on formulating suppositories including the newest types of suppositories reported in literature.

Introduction
Phenytoin suppository is a formulation, and in compounding oral drugs, the main forms of suppository are soft suppositories, hard suppositories, and multiparticulate suppositories. Oral hygienic suppositories are different types of suppositories where the use of water-soluble bases is limited. Soft suppositories are not suitable for suppositories because of their undesirable physical properties. Materials as Witepsol H85 and paraffin oil form semi-rigid suppository bases.

Material and Methods
A mixture of paraffin oil and Witepsol H85 was melted at about 45ºC. The mixture was poured into the suppository mold and cooled for about 10 minutes. The suppositories were removed from the mold and were stable at room temperature.

Pharmacy Practice
Phenytoin suppository is a formulation in which the use of water-soluble bases is limited. Soft suppositories are not suitable for suppositories because of their undesirable physical properties. Materials as Witepsol H85 and paraffin oil form semi-rigid suppository bases.

Conclusion
In conclusion, the formulation of a suppository is a field of study that requires knowledge of materials and their properties. The selection of materials is crucial in determining the physical properties of the suppository. The use of water-soluble bases is limited, and soft suppositories are not suitable for suppositories because of their undesirable physical properties. Materials such as Witepsol H85 and paraffin oil form semi-rigid suppository bases.
Phenytoin 200 mg Suppository

THERAPEUTIC ACTION

Slowly and with stirring, sprinkle the Witepsol H150 and Morphine hydrogels, with the surface of the melt to prevent the formation of the cream. Administer the suppository to the rectum if necessary. Package and label.

REFERENCE

FURTHER READING

SUPPOSITORY FORMS

- **Effervescent Suppositories**
 - **Glycerin-Gelatin Suppository**
 - **Alginic Acid Suppository**

EDUCATIONAL OBJECTIVES

- Understand the role of each suppository form in the delivery of drugs.
- Discuss the factors influencing drug absorption from suppositories.
- Explain the importance of proper administration techniques for suppositories.

DISCUSSION

Suppository formulations are commonly used in the pharmaceutical industry to deliver drugs locally to specific sites within the body. They offer several advantages over oral administration, such as reduced metabolism and enhanced bioavailability. The choice of suppository form depends on various factors, including the drug properties, patient preferences, and the desired therapeutic effect. Effervescent suppositories, for example, can provide an active ingredient as an insoluble complex, allowing for rapid and efficient absorption. However, their use may be limited by the presence of excipients that can cause irritation or discomfort. Glycerin-gelatin suppositories are known for their smooth consistency and ease of use, but they may have limited stability during storage. Alginic acid suppositories are favored for their ability to solubilize drugs and provide prolonged release, but they require careful formulation to ensure patient comfort and efficacy. Future research should focus on developing more targeted and efficient suppository formulations to meet the diverse needs of patients.